
pif_z - Raspberry Pi Zero FPGA HAT
version 1.0

Copyright 2016 Bugblat Ltd.

June 09, 2016

Contents
Quick Start 1

Software Confidence Test 1
Hardware 2

Block Diagram 2
Functional Description 2

Power 3
Connectors 3

J1 - 40-pin dual-row Raspberry Pi connector 3
J2 - 16-pin eight-row expansion connector 4
J3 - 16-pin eight-row expansion connector 5

Dimensions 5
Firmware 7

Directory Structure 7
Configuration 7

flasher 8
flashctl 8
Simulating 9
Compiling 9

Software 10
Raspberry Pi Setup 10
Software Installation 11
Directory Structure 11
C/C++ shared library 11
Python Programs 12
piffind.py 12
pifload.py 12
pifweb.py 13

Schematic 14
Legal Stuff 14

The Design 14

Quick Start

This is the documentation for Bugblat's PIF_Z Raspberry Pi Zero FPGA HAT.
Your PIF_Z board comes with a small application already installed - it flashes the onboard red and
green LEDs in antiphase and drives random patterns to the RGB LEDs.
So all you need to do is plug your PIF_Z board into your Pi and the LEDs should start doing what LEDs
do best.

Software Confidence Test
You can verify the software by flipping the PIF_Z board's configuration firmware from the flasher build,
where the LEDs light up in antiphase, to the flashctl configuration, where the LEDs light up in phase.
The Software page shows you how to enable I2C and SPI access on your Raspberry Pi Zero, and how
to download the software.
Then change to the software directory and load the flashctl configuration. The command line is:
sudo python pifload.py ../firmware/flashctl/syn/pif_flashctl.jed

Quick Start

1

Hardware

Block Diagram

Functional Description
The key components of the Bugblat pifZ board are

• XO2: a Lattice Semiconductor MachXO2 FPGA (details at Lattice)
• MCP23008: a Microchip I2C port expander (details at Microchip).
• 24LC32A: a Raspberry Pi HAT ID EEPROM (details at Microchip).
• WS2812B: two smart RGB LEDs (details at Adafruit).

The 2000HC FPGA contains 2112 four-input lookup tables (LUTs), 74Kbits of on-chip memory, and two
PLLs, plus hard-wired I2C and SPI master/slave interfaces.
The MCP23008 is an 8-bit I/O expander that sits on the Raspberry Pi's I2C bus and drives the XO2's
control pins. The Raspberry Pi expansion bus does not have an abundance of pins, so it makes sense
to control low-activity pins in this way. The MCP23008 drives the following XO2 pins, as shown on the
pifZ board:

• JTAGENn. This pin lets your application use the XO2 JTAG port pins when it is high, reverting the
pins to JTAG usage when it is low.

Hardware

2

http://www.latticesemi.com/en/Products/FPGAandCPLD/MachXO2.aspx
http://www.microchip.com
http://www.microchip.com
https://www.adafruit.com/datasheets/WS2812B.pdf

• JTAG I/O, four pins.
• the FPGA PROGn, INITn, and DONE pins.
MCP23008 Function Connection

GP0 FPGA pin 95 (TDO) and J2 pin 1
GP1 FPGA pin 94 (TDI) and J2 pin 3
GP2 FPGA pin 91 (TCK) and J2 pin 5
GP3 FPGA pin 90 (TMS) and J2 pin 7
GP4 FPGA pin 82 (JTAGENn) and J2 pin 9
GP5 FPGA pin 81 (PROGn) and J2 pin 11
GP6 FPGA pin 77 (INITn) and J2 pin 13
GP7 FPGA pin 76 (DONE) and J2 pin 15

Power
The XO2 runs at 3.3V, provided by an on-board regulator connected to the Raspberry Pi's 5V pins.
There is no connection to the Raspberry Pi's low-current 3.3V pins.
Regulated 3.3V is also routed to a test point adjacent to J2, but should only be used for minimal loads.
For higher loads, the raw 5V from the Raspberry Pi connector is fed to a test point near J1, pin 1
(marked on the board with 5V) and you can use this to derive more current at 3.3V. This test point is
a full size hole; it is also on the same 0.1" grid as J1/J2/J3.
Notice, and this is very important, that the pins on the XO2 can tolerate 3.3V only. XO2 I/O pins
can not tolerate 5V.
So the standard hookup is this:

• 5V comes in from the Raspberry Pi
• an on-board regulator drops the 5V to 3.3V
• both the 5V and the 3.3V are fed to expansion points

Connectors

J1 - 40-pin dual-row Raspberry Pi connector
Pin 1 is indicated by a square pad and shown on the board. As is standard, this connector has 20
rows, with two pins in each row. The pins in the first row are numbered 1 and 2, the pins in the
second row are numbered 3 and 4, and so on. This is different to the traditional numbering scheme
for integrated circuits.
The I2C bus runs from the Raspberry Pi to the FPGA and the MCP23008. The I2C lines (SCL and SDA)
are pulled up on the Raspberry Pi board.
A second Raspberry Pi I2C bus is used to access the configuration ROM on the PIF.
The SPI bus runs from the Raspberry Pi to the FPGA. The Raspberry Pi sources two SPI Slave Select
signals. CE0 is connected to the FPGA Sn pin and is the SPI select signal for configuration. CE1 is
connected to FPGA pad 3 and is the SPI select signal for user logic.
Pins 1 to 26 match the expansion connector on the original Raspberry Pi.

Pin Definition
1 no connection
2 5V input from the Pi
3 I2C SDA - FPGA pin 85 and MCP23008

Connectors

3

4 5V input from the Pi
5 I2C SCL - FPGA pin 86 and MCP23008
6 Ground
7 Raspberry Pi clock - FPGA pin 20
8 GPIO14 - FPGA pin 25
9 Ground
10 GPIO15 - FPGA pin 24
11 GPIO17 - FPGA pin 21
12 GPIO18 - FPGA pin 19
13 GPIO27 - FPGA pin 18
14 Ground
15 GPIO22 - FPGA pin 17
16 GPIO23 - FPGA pin 16
17 no connection
18 GPIO24 - FPGA pin 15
19 SPI MOSI - FPGA pin 49
20 Ground
21 SPI MISO - FPGA pin 32
22 GPIO25 - FPGA pin 14
23 SPI SCK - FPGA pin 31
24 SPI CE0 - FPGA pin 48
25 Ground
26 SPI CE1 - FPGA pin 13
27 Configuration EEPROM I2C SDA line
28 Configuration EEPROM I2C SCL line
29 GPIO5 - FPGA pin 12
30 Ground
31 GPIO6 - FPGA pin 9
32 GPIO12 - FPGA pin 10
33 GPIO13 - FPGA pin 8
34 Ground
35 GPIO19 - FPGA pin 4
36 GPIO16 - FPGA pin 7
37 GPIO26 - FPGA pin 2
38 GPIO20 - FPGA pin 3
39 Ground
40 GPIO21 - FPGA pin 1

J2 - 16-pin eight-row expansion connector
The column of odd-numbered pins (1, 3, 5, 7, 9, 11, 13, 15) connects to the MC23008, as detailed
above.

Connectors

4

Pin 1 is indicated by a square pad.

Pin Definition
1 FPGA pin 95 (TDO)
2 FPGA pin 96
3 FPGA pin 94 (TDI)
4 FPGA pin 97
5 FPGA pin 91 (TCK)
6 FPGA pin 98
7 FPGA pin 90 (TMS)
8 FPGA pin 99
9 FPGA pin 82 (JTAGENn)
10 Ground
11 FPGA pin 81 (PROGn)
12 FPGA pin 84
13 FPGA pin 77 (INITn)
14 FPGA pin 83
15 FPGA pin 76 (DONE)
16 FPGA pin 78

J3 - 16-pin eight-row expansion connector
Pin 1 is indicated by a square pad.

Pin Definition
1 FPGA pin 28
2 FPGA pin 27
3 FPGA pin 30
4 FPGA pin 29
5 FPGA pin 34
6 FPGA pin 35
7 FPGA pin 39
8 FPGA pin 38
9 Ground
10 Ground
11 FPGA pin 40
12 FPGA pin 41
13 FPGA pin 42
14 FPGA pin 43
15 FPGA pin 45
16 FPGA pin 47

Dimensions

Dimensions

5

• Length: 65mm (2.5 inch)
• Width: 30mm (1.2 inch)
• Thickness: standard 1.6mm PCB, plus 2mm components
• Weight: almost nothing

Dimensions

6

Firmware
These example VHDL firmware programs are supplied with a PIF_Z board:

1. flasher.vhd is a simple program that alternately flashes the red and green LEDs.
2. flashctl.vhd also flashes the LEDs, but in this case the flash pattern can be controlled by an

external computer.

Directory Structure
• firmware

• pifz

• flasher
• flashctl

• common
With one exception (see the Configuration section) HDL code is in the common directory.

Configuration
Designs are configured for the XO2-2000HC FPGA via the pifcfg package in pifcfg.vhd files in the pifz
directory. For example:
-- pifcfg.vhd, PIF_Z version
--
-- Initial entry: 01-Mar-15 te
-- non-common definitions to personalise the pif implementations
--

library ieee; use ieee.std_logic_1164.all;

package pifcfg is

 -- PIF_Z ID = 44h = 'D'
 constant PIF_ID : std_logic_vector(7 downto 0) := x"44"; -- 'D'
 constant XO2_DENSITY : string := "2000L";

end package pifcfg;

package body pifcfg is
end package body pifcfg;

Additional constants and functions can be added as a design requires. Usually the simplest practice is
to define a constant in pifcfg.vhd and use the constant to determine properties in a lower module. For
instance, a lower level module could include something like:
function myParameter(density: string) return integer is
begin
 if density="2000L" then
 return 1;
 else
 return 3;
 end if;
end;

Overall configuration definitions and useful constants are defined in the defs module pifdefs.vhd in
the common directory. A small snip of this file is:

Firmware

7

library ieee; use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;
library work; use work.pifcfg.all;

package defs is

 -- save lots of typing
 subtype slv2 is std_logic_vector(1 downto 0);
 subtype slv3 is std_logic_vector(2 downto 0);
 subtype slv4 is std_logic_vector(3 downto 0);
 subtype slv5 is std_logic_vector(4 downto 0);
 subtype slv6 is std_logic_vector(5 downto 0);
 subtype slv7 is std_logic_vector(6 downto 0);
 subtype slv8 is std_logic_vector(7 downto 0);
 subtype slv16 is std_logic_vector(15 downto 0);
 subtype slv32 is std_logic_vector(31 downto 0);

 -- these constants are defined in outer 'pifcfg' files
 constant ID : std_logic_vector(7 downto 0) := PIF_ID;
 constant DEVICE_DENSITY : string := XO2_DENSITY;

 -- I2C interface --

 constant A_ADDR : slv2 := "00";
 constant D_ADDR : slv2 := "01";

 constant I2C_TYPE_BITS : integer := 2;
 constant I2C_DATA_BITS : integer := 6;

pifz.lpf in the common directory is shared by all designs. In the main it defines the pinout of the FPGA.

flasher
flasher is a straightforward design. It uses the FPGA's built in oscillator to drive PWM patterns to the
on-board red and green LEDs. The LEDs are driven in antiphase.
The built in oscillator can be set to a variety of frequencies. We choose 26.6MHz, a frequency which is
useful in more complex designs.
flasher.vhd is a wrapper, the main work is done in piffla.vhd.

flashctl
flashctl is more complex than flasher - it can be controlled from the Raspberry Pi.
As before piffla.vhd generates antiphase LED pulses. However, the pulse stream fed to the FPGA I/Os
is controlled by a register that can be written to or read from via the I2C bus.
This is how it works. The i2c stream from the Raspberry Pi is wired up to a hard coded embedded
function block (EFB) in the FPGA.
The FPGA EFB implements:

• two i2c cores, a primary core and a secondary core
• one SPI core
• one 16-bit timer/counter
• an interface to on-chip flash memory which includes:

• user flash memory (UFM)
• configuration logic flash memory

flasher

8

• an interface to dynamic PLL settings
• an interface to the on-chip power controller

The EFB is exhaustively documented in the XO2 handbook which can be dowloaded from the Lattice
web site.
Our i2c stream is connected to the EFB's primary i2c core. The other side of the the EFB presents a
Wishbone interface to FPGA internal logic and that is the interface we use to control our logic.
The Wishbone interface is easily handled by a state machine, as seen in pifwb.vhd. This state
machine listens to events on the Wishbone interface, and generates a minimal internal address and
data bus. Here is the definition of the incoming address and data bus, extracted from pifdefs.vhd:
type XIrec is record -- write data for regs
 PWr : boolean; -- registered single-clock write strobe
 PRWA : TXA; -- registered incoming addr bus
 PRdFinished : boolean; -- registered in clock PRDn goes off
 PRdSubA : TXSubA; -- read sub-address
 PD : TwrData; -- registered incoming data bus
end record XIrec;

pifctl.vhd listens to this bus, writes values into registers, and reads values from registers.
Here is an example of writing to a register on a pif board:

1. the Raspberry Pi executes an i2c write to send the data over i2c to the FPGA's EFB
2. the FPGA state machine detects data available on the Wishbone interface, reads in the data and

generates a write strobe
3. pifctl.vhd, or other application, logic detects the write strobe, checks for an address match, and

loads the data into an internal register
So where does the internal address come from? This design splits incoming bytes into a two bit type
field and a six bit data field. The type field can indicate an A byte or a D byte. If it is an A byte, the
data field is loaded into an address register, with the six bit field allowing up to 64 addresses. If it is a
D byte, the six bit data field and a write strobe go out over the internal data bus.
Reading from a register is simpler. Read data is always eight bits, there is no need for an address field
in readback data. The address register is loaded just the same as for a write. A read subaddress is
cleared to zero at the same time the address is written. The subaddress is incremented with every
read.
Assuming the address has already been loaded, here is an example of reading from a register on a pif
board:

1. the Raspberry Pi executes an i2c read of the FPGA's EFB
2. the FPGA state machine detects data required on the Wishbone interface. It writes the register

data to the wishbone interface, generates a read finished internal strobe, and increments the
subaddress

3. the Raspberry Pi picks up the data from i2c

Simulating
Most of the design time with HDLs is spent in a simulator. flashctl_tb in the common directory is a
simulation testbed.

Compiling
The Lattice Diamond system compiles HDL files to JEDEC bit streams. There are many paths for
injecting the JEDEC data into a pif FPGA, but the documentation can be confusing. The official route is
via the ispUFW and ispVM system.
Since a pif board is a single chip system, we can use a simple solution - the Lattice Diamond JEDEC
can be loaded directly into a pif FPGA via the pifload.py script.

Simulating

9

http://www.latticesemi.com/en/Products/FPGAandCPLD/MachXO2.aspx

Software
The software supplied with a pif board supports

• finding the pif board in your system
• loading a configuration into the pif board
• interacting with the pif board via a web/HTML front end

Low level functions are supplied as C/C++ programs, high level functions are in Python.

Raspberry Pi Setup
Setting up your Raspberry Pi for GPIO access, I2C, and SPI is covered by many articles on the web so
we will only give a brief summary.
Enable I2C and SPI via the raspi-config menu under Advanced Options. First the main configuration
menu:

then enable both I2C and SPI access via the Advanced Options menu:

then reboot (sudo reboot).
Download the i2ctools utility:
sudo apt-get install python-smbus
sudo apt-get install i2c-tools

and check that the pif board is visible:
sudo i2cdetect -y 1

Software

10

http://www.python.org

With the pif_flasher configuration loaded you should see this:
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

And with the pif_flashctl configuration loaded you should see this:
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: 40 41 -- 43 -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

20h is the I2C address for the pif's MCP23008, 40h is the XO2's I2C configuration address, 41h is the
XO2's I2C user-level slave address, and 43h is the XO2's I2C state machine reset address.
The standard pif software reloads the XO2 FPGA configuration flash via an SPI configuration port, but
the I2C configuration port is still active until it is explicitly disabled.

Software Installation
The software can be downloaded from http://www.bugblat.com/products/pifz/pif.zip.
Alternatively you can download a Git repo: https://github.com/bugblat/pifz

Directory Structure
• src
• static
• templates

C/C++ shared library
To control your pif board you need to

• access the Raspberry Pi SPI and I2C pins
• control the pif's onboard MCP23008
• control the pif's FPGA

To ease this task we provide shared library - libpif.so. libpif is written in C++, with a C wrapper so that
it can interface easily to scripting languages such as Python. The source files are in the src directory.
The interface is defined in the pifwrap.h file.
For SPI and I2C access on the Raspberry Pi, we use Mike McCauley's BCM2835 GPIO library.
To compile and install libpif.so you need to change to the software/src directory and enter the usual
recipe:
make
sudo make install

Software Installation

11

http://www.bugblat.com/products/pifz/pif.zip
https://github.com/bugblat/pifz
http://www.airspayce.com/mikem/bcm2835/

The software/src directory includes a precompiled libpif.so file - you can run the Python software even
if the compiler tools for C/C++ are missing from your system. You still need to run the install step
(sudo make install) if you use the precompiled libpif.so.
We use the ctypes package for the interface between libpif.so and Python scripts.

Python Programs
All the Python programs are provided as uncompiled files. Because they access SPI and I2C GPIO pins,
they must be run with root priviledges, most easily via the sudo command. For example:
sudo python piffind.py

piffind.py
This program scans the SPI bus. Here is the output from a run on my computer:
================= pif find ========================
Using pif library version: 'libpif,Jun 9 2016,15:36:37'

XO2 Device ID: 012bb043 - device is an XO2-2000HC

==================== bye ==========================

pifload.py
This program takes a configuration JEDEC file as input. It then

1. searches for a pif board
2. clears the pif's FPGA flash memory
3. loads the new configuration data into the flash memory
4. reinitializes the FPGA.

For example, with this command line:
sudo python pifload.py pif_flasher.jed

this is the output from a run on my computer (the line starting programming has been shortened):
====================hello==========================
Configuration file is pif_flasher.jed
Using pif library version: 'libpif,Jun 9 2016,15:36:37'

XO2 Device ID: 012bb043 - device is an XO2-2000HC
XO2 Trace ID : 00.44.30.96_43.04.22.09
XO2 usercode from Flash: 00.00.00.00
XO2 usercode from SRAM : 50.49.46.30
JEDEC file is pif_flasher.jed
starting to read JEDEC file
first configuration data line: 23
.
last configuration data line: 574
552 frames
finished reading JEDEC file
erasing configuration flash ... erased
programming configuration flash programmed
transferring ...
configuration finished.

==================== bye ==========================

Python Programs

12

pifweb.py
This program implements browser control of the flashctl configuration in a pif board. You need to
have installed Aaron Swartz' web.py script:
sudo apt-get install python-webpy

There are several parts:

• pifweb.py uses web.py to

• start a web server
• serve up the application web page
• listen for GET and POST commands from the web page
• communicate with the pif board
• send replies to the web page

• the content of the HTML that is generated is governed by index.html, layout.html, header.html,
and footer.html in the templates directory

• the appearance of the HTML is governed by style.css in the static directory
Make sure you have loaded the flashctl configuration in your pif board, for example via this command
line:
sudo python pifload.py pif_flashctl.jed

Start the program in a command window:
sudo python pifweb.py

Then point your browser at localhost:8080. This is what my browser shows:

pifweb.py

13

http://webpy.org/

Schematic

Legal Stuff
This is a board for inquisitive minds with a basic understanding of electronics. You know what that
means.
Since the board is not a completed product it may not meet all the regulatory and safety compliance
standards which may normally be associated with similar items. You assume full responsibility to
determine and/or assure compliance with any such standards and related certifications as may be
applicable. You will employ reasonable safeguards to ensure that your use of the the board will not
result in any property damage or injury or death, even if the the board should fail to perform as
described or expected.

The Design
The design materials referred to in this document are not supported and do not constitute a
reference design.
To the extent permitted by applicable law there is no warranty for the design materials.
Except when otherwise stated in writing the copyright holders and/or other parties
provide the design materials as is without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The entire risk as to the quality and performance of the
design materials is with you. Should the design materials prove defective, you assume the
cost of all necessary servicing, repair or correction.
This board was designed as an evaluation and development tool. It was not designed with any other
application in mind. As such, these design materials may or may not be suitable for any other

Schematic

14

purposes. If any design material is used it becomes your responsibility as to whether it meets your
specific needs or the needs of your specific applications and the design material may require changes
to meet your requirements.

Schematic

15

	Quick Start
	Software Confidence Test

	Hardware
	Block Diagram
	Functional Description
	Power

	Connectors
	J1 - 40-pin dual-row Raspberry Pi connector
	J2 - 16-pin eight-row expansion connector
	J3 - 16-pin eight-row expansion connector

	Dimensions

	Firmware
	Directory Structure
	Configuration

	flasher
	flashctl
	Simulating
	Compiling

	Software
	Raspberry Pi Setup
	Software Installation
	Directory Structure
	C/C++ shared library
	Python Programs
	piffind.py
	pifload.py
	pifweb.py

	Schematic
	Legal Stuff
	The Design

